MegaGlest/source/glest_game/world/map.h

621 lines
21 KiB
C++

// ==============================================================
// This file is part of Glest (www.glest.org)
//
// Copyright (C) 2001-2008 Martiño Figueroa
//
// You can redistribute this code and/or modify it under
// the terms of the GNU General Public License as published
// by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version
// ==============================================================
#ifndef _GLEST_GAME_MAP_H_
#define _GLEST_GAME_MAP_H_
#ifdef WIN32
#include <winsock2.h>
#include <winsock.h>
#endif
#include "vec.h"
#include "math_util.h"
#include "command_type.h"
#include "logger.h"
#include "object.h"
#include "game_constants.h"
#include "selection.h"
#include <cassert>
#include "unit_type.h"
#include "fast_path_finder.h"
#include "command.h"
#include "checksum.h"
#include "leak_dumper.h"
namespace Glest{ namespace Game{
using Shared::Graphics::Vec4f;
using Shared::Graphics::Quad2i;
using Shared::Graphics::Rect2i;
using Shared::Graphics::Vec4f;
using Shared::Graphics::Vec2f;
using Shared::Graphics::Vec2i;
using Shared::Graphics::Texture2D;
class Tileset;
class Unit;
class Resource;
class TechTree;
class GameSettings;
class World;
// =====================================================
// class Cell
//
/// A map cell that holds info about units present on it
// =====================================================
class Cell {
private:
Unit *units[fieldCount]; //units on this cell
Unit *unitsWithEmptyCellMap[fieldCount]; //units with an empty cellmap on this cell
float height;
private:
Cell(Cell&);
void operator=(Cell&);
public:
Cell();
//get
inline Unit *getUnit(int field) const { if(field >= fieldCount) { throw megaglest_runtime_error("Invalid field value" + intToStr(field));} return units[field];}
inline Unit *getUnitWithEmptyCellMap(int field) const { if(field >= fieldCount) { throw megaglest_runtime_error("Invalid field value" + intToStr(field));} return unitsWithEmptyCellMap[field];}
inline float getHeight() const {return height;}
inline void setUnit(int field, Unit *unit) { if(field >= fieldCount) { throw megaglest_runtime_error("Invalid field value" + intToStr(field));} units[field]= unit;}
inline void setUnitWithEmptyCellMap(int field, Unit *unit) { if(field >= fieldCount) { throw megaglest_runtime_error("Invalid field value" + intToStr(field));} unitsWithEmptyCellMap[field]= unit;}
inline void setHeight(float height) {this->height= height;}
inline bool isFree(Field field) const {
bool result = getUnit(field) == NULL || getUnit(field)->isPutrefacting();
if(result == false) {
//printf("[%s] Line: %d returning false, unit id = %d [%s]\n",__FUNCTION__,__LINE__,getUnit(field)->getId(),getUnit(field)->getType()->getName().c_str());
}
return result;
}
inline bool isFreeOrMightBeFreeSoon(Vec2i originPos, Vec2i cellPos, Field field) const {
bool result = getUnit(field) == NULL || getUnit(field)->isPutrefacting();
if(result == false) {
if(originPos.dist(cellPos) > 5 && getUnit(field)->getType()->isMobile() == true) {
result = true;
}
//printf("[%s] Line: %d returning false, unit id = %d [%s]\n",__FUNCTION__,__LINE__,getUnit(field)->getId(),getUnit(field)->getType()->getName().c_str());
}
return result;
}
void saveGame(XmlNode *rootNode,int index) const;
void loadGame(const XmlNode *rootNode, int index, World *world);
};
// =====================================================
// class SurfaceCell
//
// A heightmap cell, each surface cell is composed by more than one Cell
// =====================================================
class SurfaceCell {
private:
//geometry
Vec3f vertex;
Vec3f normal;
Vec3f color;
//tex coords
Vec2f fowTexCoord; //tex coords for TEXTURE1 when multitexturing and fogOfWar
Vec2f surfTexCoord; //tex coords for TEXTURE0
//surface
int surfaceType;
const Texture2D *surfaceTexture;
//object & resource
Object *object;
//visibility
bool visible[GameConstants::maxPlayers + GameConstants::specialFactions];
bool explored[GameConstants::maxPlayers + GameConstants::specialFactions];
//cache
bool nearSubmerged;
bool cellChangedFromOriginalMapLoad;
public:
SurfaceCell();
~SurfaceCell();
void end(); //to kill particles
//get
inline const Vec3f &getVertex() const {return vertex;}
inline float getHeight() const {return vertex.y;}
inline const Vec3f &getColor() const {return color;}
inline const Vec3f &getNormal() const {return normal;}
inline int getSurfaceType() const {return surfaceType;}
inline const Texture2D *getSurfaceTexture() const {return surfaceTexture;}
inline Object *getObject() const {return object;}
inline Resource *getResource() const {return object==NULL? NULL: object->getResource();}
inline const Vec2f &getFowTexCoord() const {return fowTexCoord;}
inline const Vec2f &getSurfTexCoord() const {return surfTexCoord;}
inline bool getNearSubmerged() const {return nearSubmerged;}
inline bool isVisible(int teamIndex) const {return visible[teamIndex];}
inline bool isExplored(int teamIndex) const {return explored[teamIndex];}
//set
inline void setVertex(const Vec3f &vertex) {this->vertex= vertex;}
inline void setHeight(float height, bool cellChangedFromOriginalMapLoadValue=false);
inline void setNormal(const Vec3f &normal) {this->normal= normal;}
inline void setColor(const Vec3f &color) {this->color= color;}
inline void setSurfaceType(int surfaceType) {this->surfaceType= surfaceType;}
inline void setSurfaceTexture(const Texture2D *st) {this->surfaceTexture= st;}
inline void setObject(Object *object) {this->object= object;}
inline void setFowTexCoord(const Vec2f &ftc) {this->fowTexCoord= ftc;}
inline void setSurfTexCoord(const Vec2f &stc) {this->surfTexCoord= stc;}
void setExplored(int teamIndex, bool explored);
void setVisible(int teamIndex, bool visible);
inline void setNearSubmerged(bool nearSubmerged) {this->nearSubmerged= nearSubmerged;}
//misc
void deleteResource();
bool decAmount(int value);
inline bool isFree() const {
bool result = object==NULL || object->getWalkable();
if(result == false) {
//printf("[%s] Line: %d returning false\n",__FUNCTION__,__LINE__);
}
return result;
}
bool getCellChangedFromOriginalMapLoad() const { return cellChangedFromOriginalMapLoad; }
void saveGame(XmlNode *rootNode,int index) const;
void loadGame(const XmlNode *rootNode, int index, World *world);
};
// =====================================================
// class Map
//
/// Represents the game map (and loads it from a gbm file)
// =====================================================
class FastAINodeCache {
public:
FastAINodeCache(Unit *unit) {
this->unit = unit;
}
Unit *unit;
std::map<Vec2i,std::map<Vec2i,bool> > cachedCanMoveSoonList;
};
class FastAINode : public AI_Node {
protected:
Vec2i pos;
const Map *map;
int32 hashCode;
static const int NODE_EDGE_COUNT = 8;
FastAINode * getNodeForEdgeIndex(int index,void *userData) const;
public:
FastAINode() {
this->map = NULL;
}
FastAINode(Vec2i &pos,const Map *map) {
this->pos = pos;
this->map = map;
Checksum result;
result.addInt(pos.x);
result.addInt(pos.y);
hashCode = result.getSum();
}
void setData(Vec2i pos, const Map *map) {
this->pos = pos;
this->map = map;
Checksum result;
result.addInt(pos.x);
result.addInt(pos.y);
hashCode = result.getSum();
}
inline const Vec2i & getPos() const { return pos; }
virtual float getDistance(const AI_Node *node, void *userData);
virtual float getCost(void *userData);
virtual unsigned int getEdgeCount(void *userData) const;
virtual AI_Node * getEdge(int index, void *userData) const;
inline virtual int32 getHashCode() const { return hashCode; }
};
class Map {
public:
static const int cellScale; //number of cells per surfaceCell
static const int mapScale; //horizontal scale of surface
private:
string title;
float waterLevel;
float heightFactor;
float cliffLevel;
int cameraHeight;
int w;
int h;
int surfaceW;
int surfaceH;
int maxPlayers;
Cell *cells;
SurfaceCell *surfaceCells;
FastAINode *cellNodes;
Vec2i *startLocations;
Checksum checksumValue;
float maxMapHeight;
string mapFile;
private:
Map(Map&);
void operator=(Map&);
public:
Map();
~Map();
void end(); //to kill particles
Checksum * getChecksumValue() { return &checksumValue; }
void init(Tileset *tileset);
Checksum load(const string &path, TechTree *techTree, Tileset *tileset);
//get
inline Cell *getCell(int x, int y, bool errorOnInvalid=true) const {
int arrayIndex = y * w + x;
if(arrayIndex < 0 || arrayIndex >= getCellArraySize()) {
if(errorOnInvalid == false) {
return NULL;
}
//abort();
throw megaglest_runtime_error("arrayIndex >= getCellArraySize(), arrayIndex = " + intToStr(arrayIndex) + " w = " + intToStr(w) + " h = " + intToStr(h));
}
else if(cells == NULL) {
if(errorOnInvalid == false) {
return NULL;
}
throw megaglest_runtime_error("cells == NULL");
}
return &cells[arrayIndex];
}
inline Cell *getCell(const Vec2i &pos) const {
return getCell(pos.x, pos.y);
}
//get
inline FastAINode *getCellNode(Vec2i pos, bool errorOnInvalid=true) const {
return getCellNode(pos.x, pos.y, errorOnInvalid);
}
inline FastAINode *getCellNode(int x, int y, bool errorOnInvalid=true) const {
int arrayIndex = y * w + x;
if(arrayIndex < 0 || arrayIndex >= getCellArraySize()) {
if(errorOnInvalid == false) {
return NULL;
}
//abort();
throw megaglest_runtime_error("arrayIndex >= getCellArraySize(), arrayIndex = " + intToStr(arrayIndex) + " w = " + intToStr(w) + " h = " + intToStr(h));
}
else if(cellNodes == NULL) {
if(errorOnInvalid == false) {
return NULL;
}
throw megaglest_runtime_error("cellNodes == NULL");
}
return &cellNodes[arrayIndex];
}
inline int getCellArraySize() const {
return (w * h);
}
inline int getSurfaceCellArraySize() const {
return (surfaceW * surfaceH);
}
inline SurfaceCell *getSurfaceCell(int sx, int sy) const {
int arrayIndex = sy * surfaceW + sx;
if(arrayIndex < 0 || arrayIndex >= getSurfaceCellArraySize()) {
throw megaglest_runtime_error("arrayIndex >= getSurfaceCellArraySize(), arrayIndex = " + intToStr(arrayIndex) +
" surfaceW = " + intToStr(surfaceW) + " surfaceH = " + intToStr(surfaceH) +
" sx: " + intToStr(sx) + " sy: " + intToStr(sy));
}
else if(surfaceCells == NULL) {
throw megaglest_runtime_error("surfaceCells == NULL");
}
return &surfaceCells[arrayIndex];
}
inline SurfaceCell *getSurfaceCell(const Vec2i &sPos) const {
return getSurfaceCell(sPos.x, sPos.y);
}
inline int getW() const {return w;}
inline int getH() const {return h;}
inline int getSurfaceW() const {return surfaceW;}
inline int getSurfaceH() const {return surfaceH;}
inline int getMaxPlayers() const {return maxPlayers;}
inline float getHeightFactor() const {return heightFactor;}
inline float getWaterLevel() const {return waterLevel;}
inline float getCliffLevel() const {return cliffLevel;}
inline int getCameraHeight() const {return cameraHeight;}
inline float getMaxMapHeight() const {return maxMapHeight;}
Vec2i getStartLocation(int locationIndex) const;
inline bool getSubmerged(const SurfaceCell *sc) const {return sc->getHeight()<waterLevel;}
inline bool getSubmerged(const Cell *c) const {return c->getHeight()<waterLevel;}
inline bool getDeepSubmerged(const SurfaceCell *sc) const {return sc->getHeight()<waterLevel-(1.5f/heightFactor);}
inline bool getDeepSubmerged(const Cell *c) const {return c->getHeight()<waterLevel-(1.5f/heightFactor);}
//float getSurfaceHeight(const Vec2i &pos) const;
//is
inline bool isInside(int x, int y) const {
return x>=0 && y>=0 && x<w && y<h;
}
inline bool isInside(const Vec2i &pos) const {
return isInside(pos.x, pos.y);
}
inline bool isInsideSurface(int sx, int sy) const {
return sx>=0 && sy>=0 && sx<surfaceW && sy<surfaceH;
}
inline bool isInsideSurface(const Vec2i &sPos) const {
return isInsideSurface(sPos.x, sPos.y);
}
bool isResourceNear(const Vec2i &pos, const ResourceType *rt, Vec2i &resourcePos, int size, Unit *unit=NULL,bool fallbackToPeersHarvestingSameResource=false,Vec2i *resourceClickPos=NULL) const;
bool isResourceNear(const Vec2i &pos, int size, const ResourceType *rt, Vec2i &resourcePos) const;
//free cells
bool isFreeCell(const Vec2i &pos, Field field) const;
bool isFreeCellOrHasUnit(const Vec2i &pos, Field field, const Unit *unit) const;
bool isAproxFreeCell(const Vec2i &pos, Field field, int teamIndex) const;
bool isFreeCells(const Vec2i &pos, int size, Field field) const;
bool isFreeCellsOrHasUnit(const Vec2i &pos, int size, Field field, const Unit *unit, const UnitType *munit) const;
bool isAproxFreeCells(const Vec2i &pos, int size, Field field, int teamIndex) const;
bool canOccupy(const Vec2i &pos, Field field, const UnitType *ut, CardinalDir facing);
//unit placement
bool aproxCanMove(const Unit *unit, const Vec2i &pos1, const Vec2i &pos2, std::map<Vec2i, std::map<Vec2i, std::map<int, std::map<int, std::map<Field,bool> > > > > *lookupCache=NULL) const;
bool canMove(const Unit *unit, const Vec2i &pos1, const Vec2i &pos2,std::map<Vec2i, std::map<Vec2i, std::map<int, std::map<Field,bool> > > > *lookupCache=NULL) const;
void putUnitCells(Unit *unit, const Vec2i &pos);
void clearUnitCells(Unit *unit, const Vec2i &pos);
Vec2i computeRefPos(const Selection *selection) const;
Vec2i computeDestPos( const Vec2i &refUnitPos, const Vec2i &unitPos,
const Vec2i &commandPos) const;
const Unit * findClosestUnitToPos(const Selection *selection, Vec2i originalBuildPos,
const UnitType *ut) const;
bool isInUnitTypeCells(const UnitType *ut, const Vec2i &pos,const Vec2i &testPos) const;
bool isNextToUnitTypeCells(const UnitType *ut, const Vec2i &pos,const Vec2i &testPos) const;
Vec2i findBestBuildApproach(const Unit *unit, Vec2i originalBuildPos,const UnitType *ut) const;
std::pair<float,Vec2i> getUnitDistanceToPos(const Unit *unit,Vec2i pos,const UnitType *ut);
//misc
bool isNextTo(const Vec2i &pos, const Unit *unit) const;
bool isNextTo(const Vec2i &pos, const Vec2i &nextToPos) const;
bool isNextTo(const Unit *unit1, const Unit *unit2) const;
void clampPos(Vec2i &pos) const;
void prepareTerrain(const Unit *unit);
void flatternTerrain(const Unit *unit);
void computeNormals();
void computeInterpolatedHeights();
//static
inline static Vec2i toSurfCoords(const Vec2i &unitPos) {return unitPos / cellScale;}
inline static Vec2i toUnitCoords(const Vec2i &surfPos) {return surfPos * cellScale;}
static string getMapPath(const string &mapName, string scenarioDir="", bool errorOnNotFound=true);
inline bool isFreeCellOrMightBeFreeSoon(Vec2i originPos, const Vec2i &pos, Field field) const {
return
isInside(pos) &&
isInsideSurface(toSurfCoords(pos)) &&
getCell(pos)->isFreeOrMightBeFreeSoon(originPos,pos,field) &&
(field==fAir || getSurfaceCell(toSurfCoords(pos))->isFree()) &&
(field!=fLand || getDeepSubmerged(getCell(pos)) == false);
}
inline bool isAproxFreeCellOrMightBeFreeSoon(Vec2i originPos,const Vec2i &pos, Field field, int teamIndex) const {
if(isInside(pos) && isInsideSurface(toSurfCoords(pos))) {
const SurfaceCell *sc= getSurfaceCell(toSurfCoords(pos));
if(sc->isVisible(teamIndex)) {
return isFreeCellOrMightBeFreeSoon(originPos, pos, field);
}
else if(sc->isExplored(teamIndex)) {
return field==fLand? sc->isFree() && !getDeepSubmerged(getCell(pos)): true;
}
else {
return true;
}
}
//printf("[%s] Line: %d returning false\n",__FUNCTION__,__LINE__);
return false;
}
//checks if a unit can move from between 2 cells using only visible cells (for pathfinding)
inline bool aproxCanMoveSoon(const Unit *unit, const Vec2i &pos1, const Vec2i &pos2) const {
if(isInside(pos1) == false || isInsideSurface(toSurfCoords(pos1)) == false ||
isInside(pos2) == false || isInsideSurface(toSurfCoords(pos2)) == false) {
//printf("[%s] Line: %d returning false\n",__FUNCTION__,__LINE__);
return false;
}
int size= unit->getType()->getSize();
int teamIndex= unit->getTeam();
Field field= unit->getCurrField();
const bool *cachedResult = unit->getFaction()->aproxCanMoveSoonCached(size,field,pos1,pos2);
if(cachedResult != NULL) {
return *cachedResult;
}
//single cell units
if(size == 1) {
if(isAproxFreeCellOrMightBeFreeSoon(unit->getPos(),pos2, field, teamIndex) == false) {
//printf("[%s] Line: %d returning false\n",__FUNCTION__,__LINE__);
unit->getFaction()->addAproxCanMoveSoonCached(size,field, pos1, pos2, false);
return false;
}
if(pos1.x != pos2.x && pos1.y != pos2.y) {
if(isAproxFreeCellOrMightBeFreeSoon(unit->getPos(),Vec2i(pos1.x, pos2.y), field, teamIndex) == false) {
//Unit *cellUnit = getCell(Vec2i(pos1.x, pos2.y))->getUnit(field);
//Object * obj = getSurfaceCell(toSurfCoords(Vec2i(pos1.x, pos2.y)))->getObject();
//printf("[%s] Line: %d returning false cell [%s] free [%d] cell unitid = %d object class = %d\n",__FUNCTION__,__LINE__,Vec2i(pos1.x, pos2.y).getString().c_str(),this->isFreeCell(Vec2i(pos1.x, pos2.y),field),(cellUnit != NULL ? cellUnit->getId() : -1),(obj != NULL ? obj->getType()->getClass() : -1));
//printf("[%s] Line: %d returning false\n",__FUNCTION__,__LINE__);
unit->getFaction()->addAproxCanMoveSoonCached(size,field, pos1, pos2, false);
return false;
}
if(isAproxFreeCellOrMightBeFreeSoon(unit->getPos(),Vec2i(pos2.x, pos1.y), field, teamIndex) == false) {
//printf("[%s] Line: %d returning false\n",__FUNCTION__,__LINE__);
unit->getFaction()->addAproxCanMoveSoonCached(size,field, pos1, pos2, false);
return false;
}
}
bool isBadHarvestPos = false;
if(unit != NULL) {
Command *command= unit->getCurrCommand();
if(command != NULL) {
const HarvestCommandType *hct = dynamic_cast<const HarvestCommandType*>(command->getCommandType());
if(hct != NULL && unit->isBadHarvestPos(pos2) == true) {
isBadHarvestPos = true;
}
}
}
if(unit == NULL || isBadHarvestPos == true) {
//printf("[%s] Line: %d returning false\n",__FUNCTION__,__LINE__);
unit->getFaction()->addAproxCanMoveSoonCached(size,field, pos1, pos2, false);
return false;
}
unit->getFaction()->addAproxCanMoveSoonCached(size,field, pos1, pos2, true);
return true;
}
//multi cell units
else {
for(int i = pos2.x; i < pos2.x + size; ++i) {
for(int j = pos2.y; j < pos2.y + size; ++j) {
Vec2i cellPos = Vec2i(i,j);
if(isInside(cellPos) && isInsideSurface(toSurfCoords(cellPos))) {
if(getCell(cellPos)->getUnit(unit->getCurrField()) != unit) {
if(isAproxFreeCellOrMightBeFreeSoon(unit->getPos(),cellPos, field, teamIndex) == false) {
//printf("[%s] Line: %d returning false\n",__FUNCTION__,__LINE__);
unit->getFaction()->addAproxCanMoveSoonCached(size,field, pos1, pos2, false);
return false;
}
}
}
else {
//printf("[%s] Line: %d returning false\n",__FUNCTION__,__LINE__);
unit->getFaction()->addAproxCanMoveSoonCached(size,field, pos1, pos2, false);
return false;
}
}
}
bool isBadHarvestPos = false;
if(unit != NULL) {
Command *command= unit->getCurrCommand();
if(command != NULL) {
const HarvestCommandType *hct = dynamic_cast<const HarvestCommandType*>(command->getCommandType());
if(hct != NULL && unit->isBadHarvestPos(pos2) == true) {
isBadHarvestPos = true;
}
}
}
if(unit == NULL || isBadHarvestPos == true) {
//printf("[%s] Line: %d returning false\n",__FUNCTION__,__LINE__);
unit->getFaction()->addAproxCanMoveSoonCached(size,field, pos1, pos2, false);
return false;
}
}
unit->getFaction()->addAproxCanMoveSoonCached(size,field, pos1, pos2, true);
return true;
}
string getMapFile() const { return mapFile; }
void saveGame(XmlNode *rootNode) const;
void loadGame(const XmlNode *rootNode,World *world);
private:
//compute
void smoothSurface(Tileset *tileset);
void computeNearSubmerged();
void computeCellColors();
};
// ===============================
// class PosCircularIterator
// ===============================
class PosCircularIterator{
private:
Vec2i center;
int radius;
const Map *map;
Vec2i pos;
public:
PosCircularIterator(const Map *map, const Vec2i &center, int radius);
bool next();
const Vec2i &getPos();
};
// ===============================
// class PosQuadIterator
// ===============================
class PosQuadIterator {
private:
Quad2i quad;
Rect2i boundingRect;
Vec2i pos;
int step;
const Map *map;
public:
PosQuadIterator(const Map *map,const Quad2i &quad, int step=1);
bool next();
void skipX();
const Vec2i &getPos();
};
} } //end namespace
#endif